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Abstract
Mathematical modeling of the neuro-musculoskeletal system in healthy subjects has been pursued extensively. In post-stroke
patients, however, suchmodels are very primitive. Besides improving our general understanding of how stroke affects the limb
motions, they can be used to evaluate rehabilitation strategies by computer simulations before clinical evaluations. A planar
neuro-musculoskeletal arm model for post-stroke patients is developed. The main idea is to use a set of new coefficients,
Muscle Significance Factors (MSF), to incorporate the effects of stroke in the muscle control performance. The model uses
the optimal control theory to mimic the performance of the CNS and a two-link skeletal model with six muscles for the
biomechanical part. The model was developed and evaluated using experimental data from six post-stroke patients with
Brunnstrom levels of 4–6. The results show that MSFs are relatively distinct and independent from the arm motion which is
used to determine their values. Its variation is in the range of 0–2.58% and decreases in higher Brunnstrom levels. The mean
error of the model in predicting the path of motion varies from 0.9% in level 6 to 5.58% in level 4 subjects which can be
considered a promising level of accuracy. Using the proposed model and the MSF to customize the model for each individual
stroke patient seems a promising approach. It shows a reasonable level of robustness, i.e., independence from the type of
motions and correlated with the severity of stroke, and accuracy in predicting the shape of the motion path.

Keywords Optimal control · Musculoskeletal model · CNS model of stroke patients · Neuro-musculoskeletal arm model

1 Introduction

Mathematical models of the central nervous system (CNS)
has been increasingly used to provide better understanding
of goal-directed movements (Shadmehr et al. 2010). Such
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models tend to simulate human motor system in order to find
and analyze the strategies of CNS during biological motions
(Flash and Hogan 1985; Stroeve 1998; Suzuki et al. 1997;
Uno et al. 1989), to design motion for robots (Dong et al.
2015; Mombaur et al. 2010) and to evaluate the function and
response of the CNS after stroke (Han et al. 2008; Reinkens-
meyer et al. 2003; Zadravec and Matjačić 2013). Since the
function of the CNS depends on the musculoskeletal system
of the body, such models tend to include both neural and
musculoskeletal systems (Todorov and Li 2003).

Planar arm movements, on a transverse plane at the
shoulder’s height, have been the focus of several works
(Bernabucci et al. 2007; Bhushan and Shadmehr 1999; Shar-
ifi et al. 2017; Thaler and Todd 2009; Zadravec and Matjačić
2013) due to the relatively simple kinematics and muscular
system. In such models, a 2DOF-musculoskeletal model is
built and integratedwith amathematical representation of the
CNS. The resulting trajectories (calculated by the model) are
then compared with the experimental ones.

Two main approaches have been introduced in the litera-
ture to model the CNS in motion planning: (1) knowledge-
based techniques in which means of intelligent systems such
as Artificial Neural Networks (ANN) (Blana et al. 2009; Park
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and Durand 2008; Stroeve 1998) are trained by experimental
data to learn the behavior of the CNS, and (2) Control the-
ory approaches in which a unified control logic is assumed
for the CNS independent from the type of motion (Flash and
Hogan 1985; Li and Todorov 2007; Sharifi et al. 2017; Uno
et al. 1989; Zadravec and Matjačić 2013). The first approach
requires large amount of experimental data for training the
model; furthermore, the validity is limited to the tasks by
which the model is trained.

Optimal control, on the other hand, is an example of the
second approach (Flash and Hogan 1985; Li and Todorov
2007; Sharifi et al. 2017; Uno et al. 1989; Zadravec and
Matjačić 2013) in which, the working logic of the CNS is
assumed to be optimizing a cost function while designing
a limb motion. The theory is more than half a century old
and formulated in the framework of optimal control theory
in 2002 (Todorov and Jordan 2002). It has attracted much
attention in the community and been frequently used for con-
structingmodels of biological movements, andmotor control
(Flash and Hogan 1985) and has provided a fruitful general
framework for the CNS modeling (Todorov and Li 2003).

Several different cost functions have been proposed to be
minimized by the CNS in human movements. For instance,
Anderson and Pandy (2001) used metabolic energy as a cost
function for gait generation, Lee et al. (2009) used maximal
muscle activity to evaluate a musculoskeletal rehabilitation
program. Heim and Stryk tried to optimize the trajectory of a
robotic arm for a time and energy-optimal motion (Heim
and Stryk 2000). In arm reaching movements, motivated
by empirical investigations, two criteria have been used for
the cost function: minimum joint torque (Uno et al. 1989;
Zadravec andMatjačić 2013; Li andTodorov 2007), andmin-
imum fatigue or muscle stress (Dong et al. 2015; Sharifi et al.
2017). The second criterion has a better biological explana-
tion and generates more accurate results (Sharifi et al. 2017).

Although there are several mathematical models that
describe the normal human’s CNS in motion planning, only
a few have tackled the post-stroke subjects. As far as the
authors know, there has been no CNS model based on
the optimal control criterion for the post-stroke patients.
However, musculoskeletal deficits due to stroke have been
investigated in some studies in this area. Matjaz developed
an optimal control on the human arm model, which could
simulate arm tightness after stroke (Zadravec and Matjačić
2013). He supposed a rate for increasing the stress of human
muscles in stroke.

Modeling the CNS in post-stroke has been done by some
researchers using tools of intelligent systems such as ANN’s.
Such works, however, has targeted only the general char-
acteristics of such patients (Çelik et al. 2014) or studied a
general hypothesis (Han et al. 2008). For instance, Han and
his colleagues developed a computational model to show
that if the amount of motor training after stroke passes a

particular threshold, the motor performance reinforces itself
spontaneously (Sharifi et al. 2017). As another example,
Reinkensmeyer et al. used a population vector model to show
how the reaching accuracy is affected by the amount of killed
cells in stroke (Thaler and Todd 2009). One should note that
since neurons die haphazardly in stroke (Han et al. 2008;
Reinkensmeyer et al. 2003), the location and size of the
lesion substantially affect the CNS function. As a result, the
above-mentioned models are either intrinsically not suitable
for subject-specific studies or require large amount of exper-
imental data from each subject for training purposes.

In this paper, we propose a patient-specific planar neuro-
musculoskeletal model for the post-stroke patients which is
an extension to the models using the optimal control theory
for the CNS. The core hypothesis behind the present model
is that the CNS, after stroke, still tries to apply its optimal
control criterion; however, since some neural connections to
the musculoskeletal system are severed, the motion planning
provides different results. This was included in the model by
assigning a muscle significance factor, MSF, to each mus-
cle which determines its weight (significance) in the cost
function of the optimal controller and is determined exper-
imentally. The model was then evaluated by comparing its
predictions for the arm motion path with the actual move-
ments of some stroke patients.

2 Method

The overall scheme of the proposedmodel is shown in Fig. 1.
The stroke model, in the middle of the block diagram, con-
sists of two interacting parts: a planar musculoskeletal arm
model, and an optimal controller as the CNS. In order to
tune the model for each individual subject, a training loop
was used. The subject was asked to move his affected hand
from a given starting point to a target one on the plane of
motion. The same points were given to the model and the
resulting path from the model was subtracted from the exper-
imental one to calculate the error. The error between the two
paths was then minimized through an optimization routine
in which, certain parameters of the stroke model (i.e., MSF)
were tuned. The tuned model was then validated by other
experimental movement data of the same patient. The details
of each part are given in the following sections.

2.1 Musculoskeletal armmodel

The schematic of the musculoskeletal arm model is shown
in Fig. 2 (Sharifi et al. 2017). The model was earlier used in
several studies and shown to provide an acceptable approx-
imation of arm and shoulder in planar movements (Balaghi
et al. 2016; Blana et al. 2009; Breteler et al. 1999; Sharifi et al.
2017; Zadravec and Matjačić 2013). The model has 2 links
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Fig. 1 Neuro-musculoskeletal model of stroke and the parameter tuning procedure

Fig. 2 Planer musculoskeletal arm model with six muscles and 2 links.
(Reproduced with permission from Sharifi et al. 2017)

(a link for the forearm and another one for the upper arm),
two joints (shoulder and elbow) providing two degrees of
freedom. Six muscles were considered. Four mono-articular
muscles: pectoralis major, posterior deltoid, brachialis, lat-
eral head of triceps brachii, and two bi-articular muscles:
biceps brachii, long head of triceps.

The 2Dmotion of the arm was assumed to occur on a hor-
izontal plane at the height of the shoulder and the gravity was
neglected. As for the model parameters, the configuration of
muscles and their attachments to the segments were taken
from (Pigeon et al. 1996; Veeger et al. 1997), the physiologi-

cal cross-sectional area of eachmuscle is based on (Holzbaur
et al. 2007; Murray et al. 2000), mass and inertia parameters,
as functions of the lengths of arm and forearm, and the con-
stants of the viscosity matrix were extracted from (Nakano
et al. 1999; Suzuki et al. 1997).

The dynamic equations of the skeletal model, using the
Lagrange’s method are:

M(θ)θ̈ + D
(
θ, θ̇

) � τ (1)

where τ � [τ1, τ2]T is the joint torque vector, θ � [θ1, θ2]T

is the joint angle vector,M(θ) is themassmatrix, andD
(
θ, θ̇

)

includes the Coriolis, centrifugal and viscous friction. They
were expressed in terms of the geometry, mass and mechan-
ical properties of the model components as:

D
(
θ, θ̇

) �
[−a2

(
2θ̇1θ̇2 + θ̇22

)
sin(θ2) + k1θ̇1

a2θ̇21 sin(θ2) + k2θ̇2

]
(2)

M(θ) �
[
a1 + 2a2 cos(θ2) a3 + a2 cos(θ2)
a3 + a2 cos(θ2) a3

]
(3)

a1 � m1l2g1 + I1 + m2

(
L2
1 + l2g2

)
+ I2

a2 � m2L1lg2
a3 � m2l2g2 + I2

(4)

where L1 is the length of the upper arm and ki ,mi , Ii , lgi
indicate the viscous friction coefficients for the shoulder and
elbow joints, mass, the moment of inertia and the location
of the center of mass for the upper arm and forearm, respec-
tively.

The joint torque in Eq. (1) can be expressed in terms of
muscle forces according to the relation between the muscle
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and joint space in the musculoskeletal model. For this pur-
pose, the muscle lengths vector Q ∈ R

6 was first expressed
in terms of the joint angles, θ � [θ1, θ2]T (Sharifi et al. 2017).
If the kinematic constraints imposed by the muscle lengths
are expressed as:

F6×1(Q6×1, θ2×1) � 0

Then, the differentials are related as:

∂F
∂Q

δQ +
∂F
∂θ

δθ � 0

Which results in:

δQ � J(θ)δθ (5)

where J � −
(

∂F
∂Q

)−1(
∂F
∂θ

)
indicates the Jacobian matrix for

themuscle extending velocitieswith respect to the joint angu-
lar velocities. As a result, the relation between the muscle
contractile forces and the joint torques was directly estab-
lished using the virtual work principle:

τ � −JT(θ)α (6)

where α ∈ R
6 is the muscular tensile force vector and deter-

mined by the central nervous system. In order to use the
model in the optimal control problem, Eq. (1) should be
expressed in state space, so state vector x � [x1, x2, x3, x4],
where x1 � θ1, x2 � θ2, x3 � θ̇1, x4 � θ̇2 was used.

2.2 CNSmodel for stroke

An optimal controller was used to model the CNS. This con-
troller determines the muscle tensile forces α such that a cost
function is minimized while particular starting and ending
point constraint as well as the dynamics of the arm are sat-
isfied. The cost function, in this work, is the muscle stress
(Sharifi et al. 2017), which is considered as the summation of
squares of stress ofmuscles integrated over the entiremotion:

g � 1

2

t f∫

0

ST(t)S(t)dt (7)

where S(t) �
[

α1(t)
P1

,
α2(t)
P2

, . . .
α6(t)
P6

]T
is the muscle stress

vector, in which Pi is the muscle cross-sectional area and
αi (t) is the muscle tensile force. Also, t f is the time of move-
ment, which is measured from the onset of movement to the
moment the hand reaches the target point.

To solve this, particular state constraints needed to be con-
sidered. The initial and final velocities were set to zero. All

muscles were assumed to bear tensile stress only and the
maximum force was restricted and obtained from the prod-
uct of muscle cross-sectional area and the maximum muscle
tensile stress which was considered to be σMax � 0.6 Mp
(Sharifi et al. 2017). Also, the range of motion of shoulder
and elbow joints were constrained to be −20°–110°, and
0°–170°, respectively.

The impact of stroke on the neuro-musculoskeletal system
was modeled by a set of coefficients that modify the signifi-
cance of themuscle force in the process of finding the optimal
motion. In other words, we assume that the neural connec-
tions from the CNS to the muscle are severed or affected by
the stroke and this would scale the muscle stress si by coeffi-
cient ci which is called Muscle Significance Factor (MSF) in
this work. Equation (8) shows the affected muscle stress,Ŝi ,
to be used in the cost function of the optimal control algo-
rithm:

Ŝ(t) � diag(C)S(t) (8)

where S(t) and Ŝ(t) are the vectors of the muscle stress in a
healthy and stroke subjects, respectively, C is the vector of
MSF and diag(C) gives a diagnoal matrix with components
of C on its main diagonal.

As a result, the determination of the subject-specificmodel
consists of a two-tier optimization problem: A dynamic opti-
mization problem is solved each time to calculate the motion
trajectory of themodel (the optimal controller or theCNS) for
a given set of initial andfinal points. The numerical procedure
is explained briefly in the next paragraph. The second opti-
mization problem was formulated on the next level to obtain
the MSF. This problem which will be detailed in Sect. 2.2.1,
finds the optimum set of MSF that brings the model predic-
tions for the motion trajectories as close as possible to the
experimental ones.

In order to obtain the optimal trajectory, the Variation of
Extremals (VE) approach (Kirk 2004) was used. The method
is an iterative numerical technique to solve optimal control
problems with known boundary conditions. In this problem,
muscle stress is the cost function to beminimizedwhile com-
plying with the dynamic equations of the musculoskeletal
arm model [Eq. (1)] and the boundary conditions on the ini-
tial and final positions of the arm.

2.2.1 Model parameter identification

Most of the model parameters were selected according to
the anthropometric tables (Holzbaur et al. 2007;Murray et al.
2000; Nakano et al. 1999). The length of the upper and lower
arm segments was measured directly from each subject.

The critical parameter in the proposed model is the MSF
which needs to be experimentally determined for each stroke
subject. According to the definition in Sect. 2.2, the cost func-
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Fig. 3 A modified curvature
index, E, is used to compare the
geometry of the model
generated path with that of the
experiments

tion is a linear function of the MSFs. As a result, the scale of
the MSF does not have any impact on the optimal solution
and thus the CNS model performance. Therefore, the MSF
was assumed to be between 0 and 1. In order to find the opti-
mum values ofMSF for each subject, an inverse optimization
problem (Mombaur et al. 2010) was solved. In other words,
the optimal values of the MSF, were determined such that
they minimize the error between the patient’s performance
in a particular motion and the predicted path by the model.
The details on how the error between the two paths were
calculated are given in Sect. 2.3.

Particle Swarm Optimization (PSO) (Eberhart and
Kennedy 1995) was used to solve the optimization problem.
The method has been reported to have good performance
in problems where the search space is continuous and the
cost function evaluation has high computational cost. For our
problem, we supposed 6 vectors as the swarm, each vector
contained 6 coefficients for the MSF with randomly selected
initial values. The search was stopped when error,E, was less
than 0.5% or the search passed 30 iterations.

2.3 Error index

The comparison between the model predictions and the
patient’s motion can be done in three levels: (1) Path
geometry, (2) Trajectory profile (i.e., velocity, acceleration.)
and (3) Muscle forces. In the present work, as the first
step, the comparison was performed on the path geome-
try.

Several error measures on the path geometry are pre-
sented and evaluated in (Bernabucci et al. 2007). The core
concept in their proposed index is the difference between
the curved path traveled by the arm versus the straight
line connecting the initial and target points. Maximum Cur-
vature Distance (MCD), for example, was defined as the
maximum distance between the actual and straight paths

divided by the straight path length. As a result, MCD com-
pares the geometry of the actual path in a reaching task
with a straight path assumed as the reference or the ideal
one.

In this work, the MCD index was adopted from
(Bernabucci et al. 2007) withminormodifications. The index
was originally defined to compare a reaching arm motion in
which a straight path is assumed as the reference. In this
work, however, two general arm motions are to be compared
where the straight path cannot be assumed as the ideal one.
Therefore, as shown in Fig. 3, the largest distance between
the two paths was first measured along a direction normal
to the straight path. The error index, E, was then found by
dividing the measured distance by the straight path length.

2.4 Experiments

Six stroke patients and two healthy subjects participated in
this study.All stroke participantsweremalewith 40–55 years
of age with Brunnstrom levels of 4–6, and at least 6 months
post-stroke. None of the participants had a significant cogni-
tive impairment (i.e., Mini-Mental State Examination ≥23)
(Mehdizadeh et al. 2015). Several motions were recorded
from each subject, each motion was identified by an initial
and a final point (See Fig. 4). Subjects were asked to move
their hands from an initial point to a final one shown bymark-
ers on the table. The participants were asked to repeat each
movement 4 times and the median was selected. The median
of the four movements was the one that had the minimum
sum of difference with all others. According to a previous
study (Cirstea and Levin 2000), the reaching performance of
the upper extremities in stroke patients is almost independent
from the initial and target points as long as they are inside
the reachable workspace of the subject’s hand. As a result, in
this study, the reachable space was determined for each sub-
ject and the target points were selected such that the path lies
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Fig. 4 A schematic of the experimental setup. The subject was seated on a straight-backed chair and moved his hand on a horizontal plane on the
table from the initial point to the final one. The arm was covered by a long sleeve and glove to minimize the friction during the movements

inside and provide a relatively full coverage of the reachable
space.

The participants were able to maintain their shoulder
stationary and their wrist pronated with the palm facing
down during the movements. Such stroke subjects have usu-
ally moderate to low stiffness in their joints (Macko et al.
2001), however, to ensure the stiffness and spasticity do
not significantly impact the results, a correlation analysis
was done between the Ashworth scale of muscle spastic-
ity (Charalambous 2014) and their hand movement speed. A
Pearson’s coefficient of 0.43 was obtained which confirmed
this assumption.

Details of the experimental setup are shown in Fig. 4.
The participants’ trunk was fixed to the chair as they sat
at a raised table, so that their hand would move on a hor-
izontal plane at the level of the shoulder. To minimize the
friction between the hand and the table surface, the hand
was covered by a long sleeve and glove. The patients were
asked to rest their arm’s weight on the table while performing
the motions so the kinematics of the arm complies with the
assumptions of the model. For the measurement of the hand
movements, three markers were installed on the participant’s
arm: one marker on the wrist, another one on the elbow and
the last one on the shoulder. The Cartesian coordinates of the
markers were recorded using a Vicon™ (Shelbyville, Indi-
ana, USA)motion capture systemwith a sampling frequency
of 120 Hz.

Fig. 5 A typical series of movements made by the left hand of a subject

3 Results

Figure 6 illustrates a typical series of movements performed
by one subject. Each motion, identified by an initial point
and a final one, was repeated four times and the median was
selected and is shown in Fig. 5. The shoulder of the subject
was considered as the origin of the coordinate system, the
X-axis was along the shoulder line and the Y -axis pointing
to the front.

123



www.manaraa.com

Biological Cybernetics

Fig. 6 Iterative search for the MSF of a subject based on one of his
movements using the PSO technique. Each color shows the coefficient
of a muscle (colour figure online)

The MSF for each subject was determined using the PSO
technique as explained inSect. 2.2.1. For a typical subject, the
convergence of the MSF is shown in Fig. 6 which occurred
after about 10 cycles.

In order to investigate the robustness of the MSF (its
dependency on the motion), it was calculated based on four
different motions of each participant. The results are shown
in Fig. 7 in which, three typical subjects with Brunnstrom
levels of 4, 5 and 6 are reported. Each diagram belongs to
one subject. The values of MSFs for all six muscles from
the model are shown by bar charts. Each pattern presents the
MSF calculated based on a distinct motion. It is desired that
the MSFs do not change significantly when found based on
different motions.

For a more precise presentation on the robustness of the
MSF, the mean values and maximum variations of the MSF
for subjects of eachBrunnstrom level are provided in Table 1.
For each subject, theMSFwas found using differentmotions.
Then, the mean values and the maximum variations of each
element (in percentage) were found. Themaximum variation
indicates how sensitive each element of theMSF is to the type
of motion used for its calculation and therefore it is desired
to be as small as possible.

The next set of results report on the healthy or unaffected
subjects. As a control experiment, the MSF was calculated
based on the motions of healthy subjects or the unaffected
arm of the stroke subjects. According to the concept of MSF
explained in Sect. 2.2, the values ofMSF for a normal subject
should be all about 1 indicating that the CNS has similar
and complete access to all muscles while planning a motion.
To investigate this, the MSFs were found for healthy and
unaffected arm motions through the PSO optimization and
30 iterations. Then the standard deviation of each set of the

MSF of each subject was calculated which are reported in
Table 2. A lower standard deviation indicates that the MSF
values for a subject are more uniformly distributed about the
expected value of 1.

The evaluation of the proposed stroke model was done
by comparing its predicted path of motion with that of the
experiment in each subject. For this purpose, theMSF for the
model of each subject was found from one of his motions.
Then, the predicted path of the model for other recorded
motions was found using the initial and final points. Figure 8
shows the model and the experimental results, for typical
subjects from each Brunnstrom level (4, 5, and 6). Also, the
model results before applying the MSF (i.e., healthy model)
are shown in order to illustrate the effects of the MSF on
making themodel results similar to that of the stroke subjects.
The accuracy of the model was measured by the same error
indexdefined inSect. 2.3. The results are presented inTable 3.
Also, in order to show the variation of the results among the
subjects in each Brunnstrom level, the mean and maximum
variation of the error are reported in Table 4.

4 Discussions

The core purpose of this work was to propose a method to
incorporate the stroke effects to the mathematical models of
the arm motion. When stroke occurs, some neural connec-
tions between the CNS and the muscular system are severed.
As a result, the CNS cannot stimulate and control all mus-
cles as before. In the framework of an optimal control model
for the CNS, the level of control on the muscles in post-
stroke is incorporatedbyusing theMSF (MuscleSignificance
Factor) in the cost function to determine the altered signifi-
cance of each muscle in the motion planning. In other words,
it is assumed that the CNS is still trying to find the opti-
mummotion, however, the significance of individualmuscles
have been altered due to the stroke which results in different
motion paths. In the following, different aspects of this idea
are evaluated and discussed according to the model and the
experiments carried out in this study.

First, it is seen fromFig. 6 that the convergence of theMSF
was relatively fast and computationally affordable using a
heuristic searchmethod (PSO). For the biomechanical model
consisting of six muscles and two links, determination of the
MSF took between 30 and 180 s on a Core i7 Windows™
platform. This, however, may increase by the complexity of
the model, i.e., the number of the involved muscle and the
degrees of freedom.

The robustness of theMSF and the overall model accuracy
in path prediction in stroke subjects are discussed in more
details in the following.
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Fig. 7 The MSF of three
subjects calculated based on
four different motions to show
the robustness of the MSF.
Diagrams a–c Belongs to stroke
patients with Brunnstrom levels
of 4, 5 and 6, respectively

4.1 Robustness and uniqueness of theMSF

In order for theMSF to correspond to actual neurophysiology
of the subject, they have to be independent from the arm
motion by which they were found. The dependency of the
MSF on the arm motion was analyzed based on the results
shown in Fig. 8 and Table 1. Different sets of arm motions

were used in the optimization procedure to calculate theMSF.
The variations of the MSF for three typical subjects with
Brunnstrom levels of 4, 5, and 6 are summarized in Table 1.

It is seen from Table 1 that the variation of the MSF for all
three subjects is in the range of 0–2.58% with a mean value
of 0.35%. This range for the subjects with Brunnstrom level
of 5 and 6 is 0–0.35% with a mean of 0.17%. As a result, in
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Table 1 The mean and
maximum variation of MSF
(four different motions were
used)

Subject number Brunnstrom level Mean values of MSF Maximum variation of
MSF

1 6 [0.37, 0.42, 1, 0.39, 0.38,
0.45]

[0.05%, 0.4%, 0%,
0.35%, 0.05%, 0.1%]

2 6 [0.57, 0.74, 1, 0.42, 0.5,
0.55]

[0.1%, 0.32%, 0%,
0.04%, 0.42%, 0.33%]

3 5 [0.33, 0.48, 0.52, 0.32,
0.19, 1]

[0.05%, 0.4%, 0%,
0.35%, 0.05%, 0%]

4 5 [1, 0.31, 0.29, 0.32, 0.23,
0.8]

[0%, 0.32%, 0.24%,
0.13%, 0.22%, 0.16%]

5 4 [0.23, 0.57, 0.18, 0.48,
0.12, 1]

[0.62%, 0.13%, 0.81%,
0.29%, 1.88%, 0%]

6 4 [0.87, 0.61, 0.023, 0.30,
1, 0.04]

[0.13%, 0.17%, 0.73%,
0.76%, 0%, 2.58%]

Table 2 The standard deviation
of MSF vector for the affected
side, unaffected side and the
healthy subjects

Subject number Brunnstrom level SD of MSF of the
affected arm

SD of MSF of the
unaffected arm

1 6 0.77 0.09

2 6 0.59 0.12

3 5 0.92 0.1

4 5 1.03 0.15

5 4 1.12 0.21

6 4 1.19 0.27

7 Healthy – 0.085

8 Heathy – 0.097

general, the dependency of the MSF on the motion is seen
to be relatively minimal. This supports the hypothesis that
the MSF is an intrinsic property of the post-stroke CNS and
hence converges to a relatively unique set of values.

The variation in the MSF values, however, seems to
slightly increase for lower Brunstrom levels in which the
limb motions are more erratic.

The MSF of healthy subjects and the unaffected arm of
stroke patients were calculated to see if the MSF can prop-
erly correlate with the neural damage or distinguish between
the normal and affected arm motions. Since the MSF values
indicate the presence and significance of the muscles in the
optimal motion planning by the CNS, it is expected that in
a healthy motion, the values of MSF have a uniform distri-
bution. As seen in Table 2, the SD (standard deviation of the
elements of the MSF) is at a minimum in healthy subject or
on the unaffected side of the subjects. There is a significant
increase in SD (about 5.5 times) comparing the unaffected
side with the affected one which confirms our assumption.

4.2 Model accuracy

It is seen from Fig. 8 that using the healthy model to predict
the hand motion of a stroke subject has poor accuracy which

is substantially improved when the MSF is introduced to
the neuro-musculoskeletal model. The healthy model, in all
Brunnstrom levels, has a mean error of 22% when compared
to the experimental data. This overall mean value of error
was decreased to 2.73% when MSF was introduced to the
model.

Table 3 presents the dependency of the model accuracy on
the type of motion. The first motion of each subject is used
to determine the MSF and therefore the model should have
the least error for this motion as confirmed by this table. It is,
however, seen that the model performance for other motions
maintains a fair level of accuracy. In the worst case, the path
error has changed from 0.5 to 6.8%. It was observed that the
variation of error mostly depends on the length of motion
and the stroke level. The error was seen to decrease by the
length of motion. This may indicate that the initial and final
moments of a motion are where the maximum error occurs
which is also seen from the motion paths (Fig. 8). In the
beginning of a motion, other neural functions such as cog-
nitive abilities (e.g., attention) become substantial which are
not included in thismodel.At the end of each path, the subject
usually overshoots and then returns to the target point while
this cannot occur in the optimally controlled path generated
by the model.
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Fig. 8 The predicted path of motions by the stroke model versus the
results of experiments. The dash-dot lines show the results of the model
before using the MFS, the solid lines are the predicted movements by
the stroke model, and dash lines show the experimental results. Parts
a–c correspond to Brunnstrom levels of 4, 5 and 6, and patient number
7, 3, and 1, respectively

The accuracy of the stroke model in motion prediction,
seen from Table 4, is also dependent on the Brunnstrom
level. For levels 5 and 6, the error was always less than 2.8%.
The mean error of 1.73% and maximum variation of 1.35%
indicate a fair agreement between the model and the stroke
patients. However, this error, as expected, increased for the
subjects of level 4. For level 4 of Brunnstrom, the mean of
error was 5.58% with a maximum variation of 0.42% among
the subjects of this level. This indicated that in lower lev-
els, the impact of the neural damage on the motor control
becomes more complex. Note that in level 3 or lower, the

Table 3 The error between the predicted path by the stroke model and
experiment

Subject
number

Brunnstrom
level

Model prediction error (%)

Motion
#1

Motion
#2

Motion
#3

Motion
#4

1 6 0.5 0.8 0.7 0.3

2 6 0.5 1.2 1.3 0.9

3 5 0.5 0.5 2 1.8

4 5 1.2 1.7 1.4 2.1

5 4 5.6 4.9 6.3 6.8

6 4 4.5 5.5 5.8 5.2

The MSF for each subject is determined using the first motion

Table 4 The mean and maximum variation of error for all patients of
each Brunnstrom level (based on Table 3)

Brunnstrom
level

Mean of error
(%)

Maximum variation
of error (%)

6 0.9 8.88

5 1.4 0.43

4 5.58 0.42

Fig. 9 Predicting an s-shaped path of a level 4 stroke subject by the
model

subject may not be able to perform the required motions and
therefore, the proposed model is not applicable.

Comparing the model predictions and the experimental
paths of motions, also indicated that the model provides
a good prediction of the shape of the path. Note that the
proposed error index only shows the maximum geometrical
distance between the two paths. The path of hand motion for
a post-stroke subject may not have the typical bell-shaped
path of a normal subject. For instance, Fig. 9 shows the path
of motion for a subject with a Brunnstrom level of 4. As
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seen, the path has an s-shape. The model was also successful
in predicting a similar s-shaped path.

4.3 Suggested future developments

Being the first step toward a model for post-stroke hand
motions, in the experiments, the complexity was minimal.
The pattern of motions was similar in the form of a circular
arc. They all involved a shoulder abduction/adduction along
with an elbowflexion/extension. The comparisons andmodel
evaluationswere also on the geometry of themotion. This can
be further generalized using functional reach movements in
which the direction of the movement, muscle synergies and
actuation patterns are diversified.Also, comparisons between
the velocity profiles, joint torques and muscle forces will
extend the validity and hence application of the model.

5 Conclusions

The idea of Muscle Significance Factor, MSF, was evaluated
and shown to be promising for incorporating the effects of
neural damage caused by stroke to the optimal control model
of armmotion. The hypothesis of this workwas that the CNS,
after stroke, still tries to optimize the muscle tensions while
planning a path ofmotion. However, since the neural connec-
tions to some of the motor units are damaged, the outcome of
the optimal motion differs from that of a normal person. This
lack of full accessibility to muscles was incorporated into
the model using a set of multipliers (MSF) which determine
the relative significance of that muscle in the optimal con-
trol procedure. The MSFs were found using the kinematics
of a typical motion of the patient and then incorporated into
his model to predict the other motions. The procedure was
shown to be robust meaning that the values of the MSFs are
almost invariant to the subject’s motion implying that they
are intrinsic properties of the neuro-musculoskeletal system.
The accuracy of the model in predicting the path of motion
was also shown for 6 participating subject to be fair and com-
parable with similar models of healthy persons (Sharifi et al.
2017). The future works will include evaluation of the model
in functional reach movements and also in velocity and force
level.
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